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1 Introduction

We consider the important problem of n hamsters i.i.d. uniformly distributed
along a one-dimensional road of fixed and finite length. Define any pair of ham-
sters that are nearest to each other than they are to any other hamsters as
both being mutually nearest. We wish to determine the expected proportion of
mutually nearest hamsters.

Consider that the hamsters’ positions along the road are h1, h2, ..., hn−1, hn

in increasing order from the origin, and that the neighbours of a hamster hi

are hi−1 and hi+1, if they exist. Then, every hamster must have at least one
and at most two neighbour hamsters, for all non-trivial cases n > 1. It follows
that every hamster must have exactly one nearest neighbour hamster, and can
belong to at most one pair of mutually nearest hamsters.

Next consider that the distances between the above positions are D1, ..., Dn−1,
with Di denoting the distance between hi and hi+1. Then E(Di) = hn−h1

n−1 , i.e.
the expected distance between any neighbouring pair of hamsters is identical.

2 Approximation For Large n

A näive approximation of the desired expectation for large n could then be
obtained by considering the case of any four hamsters hi−1, hi, hi+1, hi+2 with
corresponding distances Di−1, Di, Di+1. Define a magnitude permutation as
some ordering of distances, such that if Da occurs before Db in the ordering,
Da < Db. Clearly, the order of a distance Di in a magnitude permutation may
not correspond to its order by distance from the origin of the road (which is i)

Now consider the six magnitude permutations of {Di−1, Di, Di+1}. Since
E(Da) = E(Db) ∀ Da, Db, the expectations of these magnitude permutations
are exactly equal. Then, considering only the three permutations where hi is
closer to hi+1 than it is to hi−1, i.e. Di < Di−1, we note that in two of these
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three permutations, Di < Di+1, and {hi, hi+1} are a mutually nearest pair.
Therefore, for all situations where this assumption holds, the expectation E(hi)
that hamster hi has the property of being part of a mutually nearest pair of
hamsters is E(hi) = 2

3 , and therefore for n hamsters, the expectation is 2n
3 .

3 An Exact Solution

The simple intuition expressed above is however but an approximation, since
the assumption required does not apply at the boundaries, although this im-
precision will be dominated when n is large. An exact proof is slightly more
involved. We now consider, for n hamsters, all the (equally-probable) (n − 1)!
magnitude permutations of the n− 1 distances D1, ..., Dn−1.

Define a magnitude set Ms on Di as the set of all magnitude permutations
where Di has an order s, i.e. where Di is the sth shortest distance among all
distances. Then, for any Di, there are always (n− 1) magnitude sets, each with
(n− 2)! permutations, covering all (n− 1)! permutations of magnitudes.

Here, we make a distinction between the two boundary cases {D1, Dn−1},
and the (n− 3) intermediate cases {D2, ..., Dn−2}.

3.1 Boundary Cases

Consider the hamsters h1, h2, h3 with corresponding distances D1, D2 starting
from the origin at the left boundary of the road. For h1 and h2 to be mutually
nearest, it is necessary and sufficient that D1 < D2.

Now consider M1 for D1. In all permutations within this magnitude set of
permutations, D1 is the shortest, and therefore h1 and h2 are mutually nearest
for all these permutations.

In M2, D1 is the second-shortest, and therefore h1 and h2 are mutually
nearest for all permutations but the permutations where D2 is ordered first in
the permutation. In similar vein, in M3, D1 is the third-shortest, and h1 and
h2 are mutually nearest for all permutations but those where D2 is ordered first
or second, and so on. Indeed, for Ms, the number of permutations where h1

and h2 are mutually nearest is (n− 1− s)(n− 3)!, and therefore for all Ms, the

total number of such permutations is
∑n−1

s=1 (n− 1− s)(n− 3)! = (n−1)!
2 . Since

there are two boundary cases, the total number of permutations with mutually
nearest {hi, hi+1} at the boundaries is then simply:

T (boundary) = (n− 1)! (1)
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3.2 Intermediate Cases

The analysis for the intermediate cases is similar, and the form has in fact been
suggested by the approximation in Section 2. We again consider four consecutive
hamsters hi−1, hi, hi+1, hi+2 with three corresponding distances Di−1, Di, Di+1

between them. Note that since the analysis is for intermediate cases only, and
2 ≤ i ≤ n− 2, it is always valid this time.

In particular, for Ms with Di, we note that there are (s−1) distances that are
shorter than Di, and (n−1−s) distances that are longer. We are interested in the
number of permutations where Di < Di−1 and Di < Di+1, i.e. Di−1 and Di+1

are both longer than Di. Then there are (n−1)−3Ps−1 permutations for the front
(s− 1) distances, since we can choose any distances other than Di−1, Di, Di+1,
and (n− 1− s)! permutations for the back (n− 1− s) distances, since in each
permutation they are drawn from the (n−1−s) remaining valid distances after
restrictions were observed on the front distances. The consolidated number of
permutations where hi and hi+1 are mutually nearest for Ms is therefore:

T (Ms|Di, intermediate) = (n− 1− s)!n−4Ps−1 (2)

the total number over all Ms is:

T (Di, intermediate) =

n−1∑
s=1

(n− 1− s)!n−4Ps−1 (3)

and the total number over all intermediate distances is:

T (intermediate) = (n− 3)

n−1∑
s=1

(n− 1− s)!n−4Ps−1 (4)

3.3 Synthesis

From (1) and (4), we now have an expression for the total number of distances
Di that are bounded by a pair of mutually nearest hamsters, over all possible
permutations of distances (by their magnitude or otherwise):

T (mutual) = (n− 3)

n−1∑
s=1

(n− 1− s)!n−4Ps−1 + (n− 1)! (5)

out of the total number of hamsters implied by those permutations:

T (total) = n(n− 1)! = n! (6)

and, motivated by the approximation, we would like to show that:

E(.) =
2T (mutual)

T (total)
=

2

3
(7)
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with T (mutual) multiplied by two as each satisfying distance implies two mu-
tually nearest hamsters.

Rearranging (7) for convenience, and simplifying:

3[(n− 3)

n−1∑
s=1

(n− 1− s)!n−4Ps−1 + (n− 1)!] = n!

3(n− 3)

n−1∑
s=1

(n− 1− s)!
(n− 4)!

[(n− 4)− (s− 1)]!
= n!− 3(n− 1)!

3

n−1∑
s=1

(n− 1− s)!
(n− 3)(n− 4)!

(n− 3− s)!
= n(n− 1)!− 3(n− 1)!

3(n− 3)!

n−1∑
s=1

(n− 1− s)(n− 2− s) = (n− 3)(n− 1)!

n−1∑
s=1

(n− 1− s)(n− 2− s) =
(n− 1)(n− 2)(n− 3)

3
(8)

which can be solved by splitting and applying the well-known formulae for the

sum of the first n natural numbers,
∑n

k=1 k = n(n+1)
2 , and the sum of the squares

of the first n natural numbers,
∑n

k=1 k
2 = n(n+1)(2n+1)

6 . Continuing from (8):

LHS =

n−1∑
s=1

(n− 2− s)2 + (n− 2− s)

= [(

n−3∑
k=1

k2) + 1] + [(

n−3∑
k=1

k)− 1]

=
(n− 3)(n− 2)(2n− 5)

6
+

(n− 3)(n− 2)

2

=
(2n− 5)(n− 2)(n− 3) + 3(n− 2)(n− 3)

6

=
2(n− 1)(n− 2)(n− 3)

6
= RHS (9)

and thus Equation (7) holds for all n ≥ 4.

As the reasoning for the case n=3 is trivial, we have therefore proven that
the expected number of hamsters that are mutually nearest to their nearest
neighbour hamster is exactly 2n

3 for all n ≥ 3.
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